Guangyu Zhao, Ph.D.
•AssociateProfessor (2014-present)
College of Chemical Engineering and Chemistry
Harbin Institute of Technology (HIT)
• Lecturer (2008-2013)
College of Basic and Interdisciplinary Sciences
Harbin Institute of Technology (HIT)
Education
• Ph.D. in Analytical Chemistry, Lanzhou University (2003-2008)
• Bachelor's degree in Chemistry, Lanzhou University(1999-2003)
Research Interests
• Structural Energy Storage Materials
• All-solid-state lithium-ion battery
Awards & Honors
• 2018 Ministry of Education Award for Scientific and Technological Progress
• 2021 Natural Science Award of Heilongjiang Province
Funded Projects
• 2 x National Natural Science Foundation of China (NSFC) Grants (2010, 2018)
• Sub-project of the National Key Research and Development Program (2024)
• National Postdoctoral Special Funding Program (2010)
• Natural Science Foundation of Heilongjiang Province (2017)
Contact
? Email: zhaogy@hit.edu.cn
? Phone: +86-15945992035
? Homepage: http://homepage.hit.edu.cn/zhaoguangyu
Representative articles of the past three years:
Zinc-ion battery based structure energy storage materials
[1]. Yu, Weijian; Zhao, Guangyu*; Wang, Zi; Tang, Jiaji; Wang, Shuo; Qiang, Jianjie; Cui, Yue; Chen, Yelei; Zhang, Li; Deng, Liang; Zhao, Lei; Wang, Zhenbo; Zhao, Lei; A zinc-ion battery based machinable structure energy storage material with a high specific energy and good environmental adaptability, NANO ENERGY, 2025, 142, DOI: 111210. 10.1016/j.nanoen.2025.111210
[2]. Wang, Ming; Zhao, Guangyu*; Bai, Xiaoming; Yu, Weijian; Zhao, Chenghao; Gao, Zhenren; Lyu, Pengbo; Chen, Zhaoyu; Zhang, Naiqing; Gradient Concentration Refilling of N Stabilizes Oxygen Vacancies for Enhanced Zn2+ Storage, ADVANCED ENERGY MATERIALS, 2023, 13, 38. DOI: 10.1002/aenm.202301730
[3]. Zhang, Li; Luo, Jing; Bai, Xiaoming; Yu, Liping; Wang, Ming; Zhao, Guangyu*; Zhang, Naiqing; A Poly(ethylene carbonate)-based all solid state zinc ion battery, ELECTROCHIMICA ACTA, 2023, 470, DOI: 143336. 10.1016/j.electacta.2023.143336
[4]. Wang, Ming; Zhao, Guangyu*; Yu, Xianbo; Bai, Xiaoming; Chen, Aosai; Zhao, Chenghao; Lyu, Pengbo; Zhang, Naiqing; Reconstructing fast ion transport channels of Zn3V2O7 (OH)2.2H2O to realize enhanced Zn2+storage performance, NANO ENERGY, 2023 110, 108336. DOI: 10.1016/j.nanoen.2023.108336
All-solid-state lithium-ion batteries
[1]. Bai, Xiaoming; Zhao, Guangyu*; Yang, Guiye; Wang, Ming; Lin, Qianru; Zhang, Naiqing; Multifunctional Double Layer Based on Regional Segregation for Stabilized and Dendrite-Free Solid-State Li Batteries, ADVANCED ENERGY MATERIALS, 2023, 14, 12. DOI: 10.1002/aenm.202304112
[2]. Bai, Xiaoming; Zhao, Guangyu*; Yang, Guiye; Wang, Ming; Zhang, Jiachi; Zhang, Naiqing; A magnetic-assisted construction of functional gradient interlayer for dendrite-free solid-state lithium batteries, ENERGY STORAGE MATERIALS, 2023, 63, 103041. DOI: 10.1016/j.ensm.2023.103041
[3]. Bai, Xiaoming; Zhao, Guangyu*; Yang, Guiye; Wang, Ming; Chen, Zhaoyu; Zhang, Naiqing; Titanium-Oxygen Clusters Brazing Li with Li6.5La3Zr1.5Ta0.5O12 for High-Performance All-Solid-State Li Batteries, NANO LETTERS, 2023, 23, 7934-7940. DOI: 10.1021/acs.nanolett.3c01731
EarlierSCI papers:
[1]. Le, S.; Yan, B.; Mao, Y.; Chi, D.; Zhu, M.; Jia, H.; Zhao, G.; Zhu, X.; Zhang, N., N-doped ?-MnO2 coated N-doped carbon cloth as stable cathode for aqueous zinc-ion batteries. International Journal of Electrochemical Science 2023, 18, 1-8.
[2]. Zhang, L.; Bai, X.; Zhao, G.*; Shen, X.; Liu, Y.; Bao, X.; Luo, J.; Yu, L.; Zhang, N., A visible light illumination assistant Li-O-2 battery based on an oxygen vacancy doped TiO2 catalyst. Electrochimica ACTA 2022, 405, 139794.
[3]. Huang, H.; Zhao, G.*; Yu, X.; Shen, X.; Wang, M.; Bai, X.; Zhang, N., V-doped T-Nb2O5 toward high-performance Mg2+/Li+ hybrid ion batteries. Journal of Materials Chemistry A 2022, 10,577-584.
[4]. Wu, C.; Zhang, L.; Zhao, G.*; Yu, X.; Liu, C.; He, J.; Sun, K.; Zhang, N., Interlayer-Expanded MoS2 Containing Structural Water with Enhanced Magnesium Diffusion Kinetics and Durability. CHEMELECTROCHEM 2021, 8, 4559-4563
[5]. Yu, X.; Zhao, G.*; Wu, C.; Huang, H.; Liu, C.; Shen, X.; Wang, M.; Bai, X.; Zhang, N., Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg-Li hybrid-ion batteries. Journal of Materials Chemistry A 2021, 9,23276-23285.
[6]. Huang, H.; Zhao, G.*; Sun, X.; Yu, X.; Liu, C.; Shen, X.; Wang, M.; Lyu, P.; Zhang, N., Built-in electric field enhanced ionic transport kinetics in the T-Nb2O5@MoO2 heterostructure. Journal of Materials Chemistry A 2021, 9,22854-22860.
[7]. Yu, X.,Zhao, G.*, Liu, C., Wu, C., Huang, H., He, J., Zhang, N., A MoS2 and Graphene Alternately Stacking van der Waals Heterostructure for Li+/Mg2+ Co-Intercalation. Advanced Functional Materials, 2021, 2103214.
[8]. Shen, X.;Zhao, G.*; Yu, X.; Huang, H.; Wang, M.; Zhang, N., Multifunctional SnSe-C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A 2021, 9,21695-21702.
[9]. Wu, C.; Zhao, G.*; Yu, X.;Liu, C.;Lyu, P.;Huang, H.;Maurin, G.; Le, S.; Sun, K. Zhang, N,MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chemical Engineering Journal 2021, 412, 128736.
[10]. Yu, X.; Zhao, G.*; Huang, H.; Liu, C.; Lyu, P.; Zhang, N., Interlayer-expanded MoS2 nanoflowers anchored on the graphene: A high-performance Li+/Mg2+ co-intercalation cathode material. Chemical Engineering Journal 2021, 428, 131284.
[11]. Yu, X.; Zhao, G.*;Liu, C.;Huang, H.; Shen, X.;Zhang, N.,A material of hierarchical interlayer-expanded MoS2 nanosheets/hollow N-doped carbon nanofibers as a promising Li+/Mg2+ co-intercalation host. Journal of Materials Chemistry A 2021, 9,11545-11552.
[12]. Liu, C.; Zhao, G.*; Zhang, L.; Yu, X.; Huang, H.; Sun, K.; Zhang, N., A hybrid Mg2+/Li+ battery based on high-capacity conversion-type cobalt disulfide cathodes with ultralong cycle life and high energy density. Chemical Engineering Journal 2021, 405, 126726.
[13]. Liu, C.;Zhao, G.*; Zhang, L.;Lyu, P.;Yu, X.;Huang, H.;Maurin, G.; Sun, K. Zhang, N,Self-Supported PPy-Encapsulated CoS2 Nanosheets Anchored on TiO2–x Nanorod Arrays Support by Ti–S Bonds for Ultra-long Life Hybrid Mg2+/Li+ Battery. Journal of Materials Chemistry A 2020, 8, 22712-22719.doi.org/10.1039/D0TA07983A
[14]. Shen, X.; Zhao, G.*; Fan, L.; Guo, Z.; Zhao, C.; Chen, A.; Yang, G.; Cheng, Z. Zhang, N., CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A 2020, 8, 21961-21967.doi.org/10.1039/D0TA09113H
[15]. Liu, C.;Zhao, G.*; Zhang, L.; Yu, X.; Huang, H.;Sun, K.,Zhang, N.,A hybrid Mg2+/Li+ battery based on high-capacity conversion-type cobalt disulfide cathodes with ultralong cycle life and high energy density. Chemical Engineering Journal 2020, 405, 126726.
[16]. Yu, X.; Zhao, G.*;Gong, S.; Liu, C.; Wu, C.; Lyu, P.; Maurin, G.; Zhang, N.,Design of MoS2/Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS Applied Materials & Interfaces 2020, 12, 24777-24785.
[17]. Zhang, L.; Ma, X.; Liang, H.; Lin, H.; Zhao, G.*, A non-enzymatic glucose sensor with enhanced anti-interference ability based on MIL-53(NiFe) metal-organic framework. Journal of Materials Chemistry B 2019, 7, 7006-7013.
[18]. Huang, H.; Zhao, G.*; Zhang, N,; Sun, K.,Two-dimensionalNb2O5holeynanosheets prepared by a graphene sacrificial template method for highperformance Mg2+/Li+ hybrid ion batteries. Nanoscale 2019, 11,16222-16227.
[19]. Gong, S.; Zhao, G.*; Zhang, N.; Sun, K., Chemical mass production of MoS2/graphene van der Waals heterostructure as a highperformance Li‐ion intercalation host. ChemElectroChem 2019, 6, 3393-3400.
[20]. Shen, X.; Zhao, G.*; Sun, K., A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. Electrochimica Acta 2019, 317 (10) 333-340.
[21]. Zhao G.; Liu Y.; TangL.; ZhangL.; Sun K., Capacitive Behavior Based on the Ultrafast Mass Transport in a Self-Supported Lithium Oxygen Battery Cathode. ACS Applied Energy Materials 2019, 2 (3), 2113-2121.
[22]. Zhang L.; Liang H.; Ma X.; Ye C.;Zhao G.*, A vertically aligned CuO nanosheet flm prepared by electrochemicalconversion on Cu-based metal-organic framework for non-enzymaticglucose sensors, Microchemical Journal 2019, 146 (5), 479-485.
[23]. Wu, C.;Zhao, G.*; Gong, S.; Zhang, N.; Sun, K., PVP incorporated MoS2 as a Mg ion host with enhanced capacity and durability. Journal of Materials Chemistry A 2019, 7 (9), 4426-4430.
[24]. Wu, C.; Zhao, G.*; Bao, X.; Chen, X.; Sun, K., Hierarchically porous delta-manganese dioxide films prepared by an electrochemically assistant method for Mg ion battery cathodes with high rate performance. Journal of Alloys and Compounds 2019, 770, 914-919.
[25]. Gong, S.; Zhao, G.*; Lyu, P.; Sun, K., Insights into the intrinsic capacity of interlayer-expanded MoS2 as a Li-ion intercalation host. Journal of Materials Chemistry A 2019, 7 (3), 1187-1195.
[26]. Zhao, G.; Tang, L.; Zhang, L.; Chen, X.; Mao, Y.; Sun, K., Well-developed capacitive-capacity of metal-organic framework derived Co3O4 films in Li ion battery anodes. Journal of Alloys and Compounds 2018, 746, 277-284.
[27]. Zhao, G.; Sun, X.; Zhang, L.; Chen, X.; Mao, Y.; Sun, K., A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes. Journal of Power Sources 2018, 389, 8-12.
[28]. Zhang, L.; Ye, C.; Li, X.; Ding, Y.; Liang, H.; Zhao, G.; Wang, Y., A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor. Nano-Micro Letters 2018, 10 (2).
[29]. Zhai, X.; Mao, Z.; Zhao, G.; Rooney, D.; Zhang, N.; Sun, K., Nanoflake delta-MnO2 deposited on carbon nanotubes-graphene-Ni foam scaffolds as self-standing three-dimensional porous anodes for high-rate-performance lithium-ion batteries. Journal of Power Sources 2018, 402, 373-380.
[30]. Gong, S.; Zhao, G.*; Lyu, P.; Sun, K., A Pseudolayered MoS2 as Li-Ion Intercalation Host with Enhanced Rate Capability and Durability. Small 2018, 14 (48).
[31]. Zhao, G.; Zhang, L.; Niu, Y.; Sun, K., A molten Mg corrosion method for preparing porous Ti foam as self-supported Li-O-2 battery cathodes. Electrochimica Acta 2017, 224, 64-70.
[32]. Zhao, G.; Zhang, L.; Li, C.; Huang, H.; Sun, X.; Sun, K., A practical Li ion battery anode material with high gravimetric/volumetric capacities based on T-Nb2O5/graphite composite. Chemical Engineering Journal 2017, 328, 844-852.
[33]. Zhao, G.; Ye, C.; Zhang, L.; Li, C.; Sun, K., T-Nb2O5 quantum dots prepared by electrodeposition for fast Li ion intercalation/deintercalation. Nanotechnology 2017, 28 (21).
[34]. Zhang, L.; Ding, Y.; Li, R.; Ye, C.; Zhao, G.; Wang, Y., Ni-Based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. Journal of Materials Chemistry B 2017, 5 (28), 5549-5555.
[35]. Zhang, L.; Ding, Y.; Li, R.; Ye, C.; Zhao, G.; Wang, Y., Electrodeposition of ultra-long copper nanowires on a titanium foil electrode for nonenzymatic voltammetric sensing of glucose. Microchimica Acta 2017, 184 (8), 2837-2843.
[36]. Liu, C.; Zhao, G.*; Sun, K., Ti@MoSx core-shell nanowire arrays as self-supported electrodes for hydrogen evolution reaction. International Journal of Hydrogen Energy 2017, 42 (52), 30646-30652.
[37]. Zhao, G.; Zhang, L.; Niu, Y.; Sun, K.; Rooney, D., Enhanced durability of Li-O-2 batteries employing vertically standing Ti nanowire array supported cathodes. Journal of Materials Chemistry A 2016, 4 (11), 4009-4014.
[38]. Zhao, G.; Zhang, L.; Lv, J.; Li, C.; Sun, K., Vertically aligned graphitic carbon nanosheet arrays fabricated from graphene oxides for supercapacitors and Li-O-2 batteries. Chemical Communications 2016, 52 (38), 6403-6406.
[39]. Zhao, G.; Zhang, L.; Lv, J.; Li, C.; Sun, K., A graphitic foam framework with hierarchical pore structure as self-supported electrodes of Li-O-2 batteries and Li ion batteries. Journal of Materials Chemistry A 2016, 4 (4), 1399-1407.
[40]. Zhao, G.; Zhang, D.; Zhang, L.; Sun, K., Ti@delta-MnO2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries. Electrochimica Acta 2016, 202, 8-13.
[41]. Zhao, G.; Zhang, L.; Wang, B.; Sun, K., Cuprous oxide as Cathode Catalysts of Lithium Oxygen Batteries. Electrochimica Acta 2015, 184, 117-123.
[42]. Zhao, G.; Li, C.; Zhang, L.; Lv, J.; Niu, Y.; Du, Y.; Sun, K., "Sea cucumber"-like Ti@MoO3 nanorod arrays as self-supported lithium ion battery anodes with enhanced rate capability and durability. Journal of Materials Chemistry A 2015, 3 (45), 22547-22551.
[43]. Zhang, L.; Zhang, J.; Yang, C.; Zhao, G.; Mu, J.; Wang, Y., Freestanding Cu nanowire arrays on Ti/Cr/Si substrate as tough nonenzymatic glucose sensors. Microchemical Journal 2015, 5 (101), 82998-83003.
[44]. Zhang, L.; Yang, C.; Zhao, G.; Mu, J.; Wang, Y., Self-supported porous CoOOH nanosheet arrays as a non-enzymatic glucose sensor with good reproducibility. Sensors and Actuators B-Chemical 2015, 210, 190-196.
[45]. Mo, R.; Tung, S. O.; Lei, Z.; Zhao, G.; Sun, K.; Kotov, N. A., Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. Acs Nano 2015, 9 (5), 5009-5017.
[46]. Zhao, G.; Zhang, L.; Sun, K.; Li, H., Free-standing Pt@RuO2 center dot xH(2)O nanorod arrays on Si wafers as electrodes for methanol electro-oxidation. Journal of Power Sources 2014, 245, 892-897.
[47]. Zhao, G.; Niu, Y.; Zhang, L.; Sun, K., Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium air battery cathode catalyst. Journal of Power Sources 2014, 270, 386-390.
[48]. Zhao, G.; Mo, R.; Wang, B.; Zhang, L.; Sun, K., Enhanced Cyclability of Li-O-2 Batteries Based on TiO2 Supported Cathodes with No Carbon or Binder. Chemistry of Materials 2014, 26 (8), 2551-2556.
[49]. Zhao, G.; Lv, J.; Xu, Z.; Zhang, L.; Sun, K., Carbon and binder free rechargeable Li-O-2 battery cathode with Pt/Co3O4 flake arrays as catalyst. Journal of Power Sources 2014, 248, 1270-1274.
[50]. Mu, J.; Zhang, L.; Zhao, G.; Wang, Y., The crystal plane effect on the peroxidase-like catalytic properties of Co3O4 nanomaterials. Physical Chemistry Chemical Physics 2014, 16 (29), 15709-15716.
[51]. Zhao, G.; Zhang, N.; Sun, K., Electrochemical preparation of porous MoO3 film with a high rate performance as anode for lithium ion batteries. Journal of Materials Chemistry A 2013, 1 (2), 221-224.
[52]. Zhao, G.; Zhang, N.; Sun, K., Porous MoO3 films with ultra-short relaxation time used for supercapacitors. Materials Research Bulletin 2013, 48 (3), 1328-1332.
[53]. Zhao, G.; Zhang, L.; Sun, K., Capacitive contribution to lithium storage capacity in porous MoO3 films. Journal of Electroanalytical Chemistry 2013, 694, 61-67.
[54]. Zhao, G.; Zhang, L.; Pan, T.; Sun, K., Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li-O-2 batteries. Journal of Solid State Electrochemistry 2013, 17 (6), 1759-1764.
[55]. Zhao, G.; Zhang, L.; Meng, Y.; Zhang, N.; Sun, K., High storage performance of core-shell Si@C nanoparticles as lithium ion battery anode material. Materials Letters 2013, 96, 170-173.
[56]. Zhao, G.; Zhang, L.; Meng, Y.; Zhang, N.; Sun, K., Decoration of graphene with silicon nanoparticles by covalent immobilization for use as anodes in high stability lithium ion batteries. Journal of Power Sources 2013, 240, 212-218.
[57]. Zhao, G.; Xu, Z.; Zhang, L.; Sun, K., Hierarchical porous Co3O4 films with size-adjustable pores as Li ion battery anodes with excellent rate performances. Electrochimica Acta 2013, 114, 251-258.
[58]. Zhao, G.; Xu, Z.; Sun, K., Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O-2 batteries. Journal of Materials Chemistry A 2013, 1 (41), 12862-12867.
[59]. Zhang, L.; Zhao, G.; Wang, Y., Polyaniline nanowire electrodes with high capacitance synthesized by a simple approach. Materials Science & Engineering C-Materials for Biological Applications 2013, 33 (1), 209-212.
[60]. Qu, M.; Wu, J.; Zhao, G.; Zhang, Y., Nanostructured Surfaces, Coatings, and Films: Fabrication, Characterization, and Application. Journal of Nanomaterials 2013.
[61]. Zhao, G.; Wei, Z.; Zhang, N.; Sun, K., Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Materials Letters 2012, 89, 243-246.
[62]. Zhao, G.; Meng, Y.; Zhang, N.; Sun, K., Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Materials Letters 2012, 76, 55-58.
[63]. Wang, Z.-C.; Zhao, D.-D.; Zhao, G.; Li, H.-L., Ultrasonic assisted polyol synthesis of highly dispersed Pt/MWCNT electrocatalyst for methanol oxidation. Journal of Solid State Electrochemistry 2009, 13 (3), 371-376.
[64]. Zhao, G.; Xu, C.-L.; Li, H.-L., Pt-Ru nanowire arrayed electrodes for nitrite detection. Materials Letters 2008, 62 (10-11), 1663-1665.
[65]. Zhao, G.; Li, H.-L., Electrochemical oxidation of methanol on Pt nanoparticles composited MnO2 nanowire arrayed electrode. Applied Surface Science 2008, 254 (10), 3232-3235.
[66]. Zhao, G.; Li, H.-L., Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Microporous and Mesoporous Materials 2008, 110 (2-3), 590-594.
[67]. Qu, M.; Zhao, G.; Wang, Q.; Cao, X.; Zhang, J., Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology 2008, 19 (5).
[68]. Qu, M.; Zhao, G.; Cao, X.; Zhang, J., Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir 2008, 24 (8), 4185-4189.
[69]. Zhao, G.; Xu, C.-L.; Li, H.-L., Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. Journal of Power Sources 2007, 163 (2), 1132-1136.
[70]. Zhao, G.; Xu, C.-L.; Guo, D.-J.; Li, H.; Li, H.-L., Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation. Applied Surface Science 2007, 253 (6), 3242-3246.
[71]. Yang, G.-W.; Gao, G.-Y.; Zhao, G.; Li, H.-L., Effective adhesion of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts. Carbon 2007, 45 (15), 3036-3041.
[72]. Zhao, G.; Xu, C.-L.; Guo, D.-J.; Li, H.; Li, H.-L., Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation. Journal of Power Sources 2006, 162 (1), 492-496.
[73]. Xu, C.-L.; Li, H.; Zhao, G.; Li, H.-L., Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate magnetic storage devices. Materials Letters 2006, 60 (19), 2335-2338.
[74]. Xu, C.-L.; Li, H.; Zhao, G.; Li, H.-L., Electrodeposition and magnetic properties of Ni nanowire arrays on anodic aluminum oxide/Ti/Si substrate. Applied Surface Science 2006, 253 (3), 1399-1403.
[75]. Li, H.; Xu, C. L.; Zhao, G.; Li, H. L., Effects of annealing temperature on magnetic property and structure of amorphous Co49Pt51 alloy nanowire arrays prepared by direct-current electrodeposition. Journal of Physical Chemistry B 2005, 109 (9), 3759-3763.
[76]. Li, H.; Xu, C. L.; Zhao, G.; Li, H. L., Preparation and magnetic properties of amorphous Co-Pt alloy nanowire arrays.ACTA PHYSICO-CHIMICA SINICA 2005, 21(6), 641-645.